Recognition of Words from the EEG Laplacian
نویسندگان
چکیده
Recent works on the relationship between the electro-encephalogram (EEG) data and psychological stimuli show that EEG recordings can be used to recognize an auditory stimulus presented to a subject. The recognition rate is, however, strongly affected by technical and physiological artifacts. In this work, subjects were presented seven auditory simuli in the form of English words (first, second, third, left, right, yes, and no), and the time-locked electric field was recorded with a 64 channel Neuroscan EEG system. We used the surface Laplacian operator to eliminate artifacts due to sources located at regions far from the electrode. Our intent with the Laplacian was to improve the recognition rates of auditory stimuli from the electric field. To compute the Laplacian, we used a spline interpolation from spherical harmonics. The EEG Laplacian of the electric field were average over trials for the same auditory stimulus, and with those averages we constructed prototypes and test samples. In addition to the Laplacian, we applied Butterworth bandpass digital filters to the averaged prototypes and test samples, and compared the filtered test samples against the prototypes using a least squares metric in the time domain. We also analyzed the effects of the spline interpolation order and bandpass filter parameters in the recognition rates. Our results show that the use of the Laplacian improves the recognition rates and suggests a spatial isomorphism between both subjects.
منابع مشابه
Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals
Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...
متن کاملA hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine
Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...
متن کاملClassification of Right/Left Hand Motor Imagery by Effective Connectivity Based on Transfer Entropy in EEG Signal
The right and left hand Motor Imagery (MI) analysis based on the electroencephalogram (EEG) signal can directly link the central nervous system to a computer or a device. This study aims to identify a set of robust and nonlinear effective brain connectivity features quantified by transfer entropy (TE) to characterize the relationship between brain regions from EEG signals and create a hierarchi...
متن کاملIssues and considerations for using the scalp surface Laplacian in EEG/ERP research: A tutorial review.
Despite the recognition that the surface Laplacian may counteract adverse effects of volume conduction and recording reference for surface potential data, electrophysiology as a discipline has been reluctant to embrace this approach for data analysis. The reasons for such hesitation are manifold but often involve unfamiliarity with the nature of the underlying transformation, as well as intimid...
متن کاملDetection and Classification of Emotions Using Physiological Signals and Pattern Recognition Methods
Introduction: Emotions play an important role in health, communication, and interaction between humans. The ability to recognize the emotional status of people is an important indicator of health and natural relationships. In DEAP database, electroencephalogram (EEG) signals as well as environmental physiological signals related to 32 volunteers are registered. The participants in each video we...
متن کامل